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Abstract. In this paper, we introduce and investigate the generalized Pandita sequences and we deal
with, in detail, two special cases, namely, Pandita and Pandita-Lucas sequences. We present Binet’s formulas,
generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give
some identities and matrices related with these sequences. Furthermore, we show that there are close relations
between Pandita, Pandita-Lucas and Narayana, Narayana-Lucas numbers.
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1. Introduction

Narayana sequence{N,, } ,>0 (OEIS: A000930, [6]) and Narayana-Lucas sequence {U, },>0 (OEIS: A001609,
[6]) are defined, respectively, by the third-order recurrence relations
Nn+3 = Nn+2+Nn7 NOZO,NI :15N2:]-, (11)

Un+s = Unpp2+tUn,  Up=3U1=1U=1. (1.2)
The sequences {N,, }n>0 and {U, },>0 can be extended to negative subscripts by defining

N, = _N—(n—Z) +N—(n—3)7

U, = 7U—(n—2) + U—(n—3)a

for n = 1,2,3, ... respectively. Therefore, recurrences (1.1)- (1.2) hold for all integer n. For more information
on generalized Narayana numbers, see Soykan [13].

Now, we define two sequences related to Narayana and Narayana-Lucas numbers. Pandita and Pandita-
Lucas numbers are defined as

P,=P, 14+ P,_3+1, with PBh=0,P,=1,P, =2, n >3,
1
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and
Sn:Sn71+Sn73—1, with SO :4, Sl 22,52 :2, 77,237
respectively.
The first few values of Pandita and Pandita-Lucas numbers are
0,1,2,3,5,8,12, 18,27, 40,59, 87,128, 188, ...
and
4,2,2,5,6,7,11,16,32,47,68,99, 145, ...

respectively.

The sequences {P,} and {S,} satisfy the following fourth order linear recurrences:

P,

2P,_1— P, 9+ P, 3—-PFPy, FPo=0,P=1PFP=2"PFP=3, n >4,

Sh 28,1 — Sn—2+ Sn—B - Sn—4a SO = 47 S1 = 23 Sy = 27 S3 = 57 n > 4.

There are close relations between Pandita, Pandita-Lucas and Narayana, Narayana-Lucas numbers. For

example, they satisfy the following interrelations:

Po = Npsod Ny—1=Nppg—1,
31P, = 13U, 2+ 6U, 41 + 40, — 31,
Sn = 3Npi1—2N, +1,
S, = Un+1,
and
Nnt3 = Pnys— Pryo,
31N, = 98,10 — 35,1 — 25, —4,
U, = 2P,is+Pu1—5P, —2,
Upo = Snpts— Snyo.

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e., Pandita,
Pandita-Lucas numbers). First, we recall some properties of the generalized Tetranacci numbers.
The generalized (r, s, t,u) sequence (or generalized Tetranacci sequence or generalized 4-step Fibonacci

sequence) {W,, (Wy, W1, Wa, Ws;r, s, t,u) }n>0 (or shortly {W,,},>0) is defined as follows:
Wop=rWy_1+sW,_o+tW,_3+uW,_4, Wo=cog, Wi =c1,Wao=co,W3=c3, n>4 (13)

where Wy, Wy, Wa, W3 are arbitrary complex (or real) numbers and r, s, ¢, u are real numbers.
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This sequence has been studied by many authors and more detail can be found in the extensive literature
dedicated to these sequences, see for example [1,3,4,5,8,10,11,14,15]. The sequence {W,, },,>0 can be extended
to negative subscripts by defining

t s T 1
an - —7W7 n— - *W, n— - 7W7 n— 7W7 n—
g -0 = W) = oW em-3) T W o(n-a)

for n =1,2,3,... when u # 0. Therefore, recurrence (1.3) holds for all integers n.

As {W,} is a fourth-order recurrence sequence (difference equation), its characteristic equation is
A stz —u=0 (1.4)

whose roots are «, 3,7, d. Note that we have the following identities

a+B+v+d = 1
aftay+ad+py+ B0+ = —s,

aBy+afd+ayd +pBy5 = t,
afyd = —u.

Using these roots and the recurrence relation, Binet’s formula can be given as follows:

THEOREM 1. (Four Distinct Roots Case: o # [ # v # 0) For all integers n, Binet’s formula of

generalized Tetranacci numbers is

pra” p23" p3y" pad”

T -Ba-Na-0 G-aB-NG-0 (-0 -BH-0 @G- a)(é_ﬁ)(é_&)s))

p1 = Ws—(B+7+8)Wa+ (By+ Bd+70)Wi — BydWy,
p2 = Ws—(a+v+06)Wa+ (ay+ ad +v0) W1 — ayéWy,
p3 = Wiz—(a+B+0)Wa+ (af+ad + B6)W1 — apéWy,
pr = Wi—(a+B8+7)Wa+ (af+ay+ By)W1 — afyWo.

Usually, it is customary to choose «, 3,7, § so that the Equ. (1.4) has at least one real (say «) solutions.
Note that the Binet form of a sequence satisfying (1.4) for non-negative integers is valid for all integers n

(see [2]).



110 International Journal of Mathematics, Statistics and Operations Research

Next, we consider two special cases of the generalized (r,s,t,u) sequence {W,} which we call them
(r,s,t,u)-Fibonacci and (r, s,t,u)-Lucas sequences. (r,s,t,u)-Fibonacci sequence {Gy,}n>0 and (r,s,t,u)-

Lucas sequence {H,, }»>0 are defined, respectively, by the fourth-order recurrence relations

Gnia = 71Gpys+ 5Gnio +1G i1 +uGy, (1.6)
Go = 0,G1=1,G=rG3=1"+s,

Hyvqa = rHyys+sHpyo+tHp1 +uHy, (1.7)
Hy, = 4,H1:r,Hg:2s+r2,H3:r3+3sr+3t.

The sequences {G,,},>0 and {H,},>0 can be extended to negative subscripts by defining

t s T 1
G, = —G_ n—1) — -G_ n—2) — -G_ n— -G_ n—4)
P G B (e R
t s r 1
H., = —H (1~ ~H (o)~ —H_(4_3+—H_(_4),
n y =) T ) T () T (ng)

for n =1,2,3, ... respectively. Therefore, recurrences (1.6) and (1.7) hold for all integers n.
For all integers n, (r, s,t, u)-Fibonacci and (r, s, ¢, u)-Lucas numbers (using initial conditions in (1.6) or

(1.7)) can be expressed using Binet’s formulas as in the following corollary.

COROLLARY 2. (Four Distinct Roots Case: o # 3 # v # 0) Binet’s formula of (r, s, t,u)-Fibonacci and

(r, s, t,u)-Lucas numbers are

a an+2 ﬁn+2 ,Yn+2 5n+2
"Ta—Aa—a=-0)  B-aB-NB-0 G- -Ar-9 G-a0-B0-1)
and
Hn — a7z+ﬁn+,y7L+5n7
respectively.

Proof. Take W,, = G,, and W,, = H,, in Theorem 1, respectively. [J

oo
Next, we give the ordinary generating function Y. W, z" of the sequence W.,.
n=0

o0
LEMMA 3. Suppose that fw, (z) = >, Wpnz™ is the ordinary generating function of the generalized
n=0
o0
(rys,t,u) sequence {Wp}n>o0. Then, Y Wy,2™ is given by
n=0

o0

Z W am — Wo + (Wl — TWO)Z + (W2 —rWy — SWO)22 + (Wg —rWy — sW; — tWO)Z3

1.8
~ 1—rz— 8522 —tz3 —uzt (1.8)

Proof. For a proof, see Soykan [8, Lemma 1]. O
The following theorem presents Simson’s formula of generalized (r, s, ¢, u) sequence (generalized Tetranacci

sequence) {W,}.



Generalized Pandita Numbers 111

THEOREM 4 (Simson’s Formula of Generalized (r, s, t,u) Numbers). For all integers n, we have

W7L+3 Wn+2 Wn+1 Wn W3 W2 Wl WO
Wa W W, W, Wy, W, W, W_
+2 +1 L (— 1) 2 1 0 v (19)
Wi Wn Wuq Wio Wy Wo W_i W_,
Wn Wiy Who Wys Wo W_1 W_p W_3

Proof. (1.9) is given in Soykan [7]. O
The following theorem shows that the generalized Tetranacci sequence W,, at negative indices can be

expressed by the sequence itself at positive indices.

THEOREM 5. For n € Z, for the generalized Tetranacci sequence (or generalized (r,s,t,u)-sequence or

4-step Fibonacci sequence) we have the following:
1

wW_, = 6(—u)_"(—6W3n + 6H,Wa,, — 3H>W,, + 3Hs,,W,, + WoH2 4 2WyHs,, — 3WoH,, Ha,)

1 1
(=)t (W, — H,Way, + i(H,QL — Hy, )W, — 6(15{;“; + 2H3,, — 3Ha, H,)Wp).

Proof. For the proof, see Soykan [9, Theorem 1.]. O
Using Theorem 5, we have the following corollary, see Soykan [9, Corollary 4].

COROLLARY 6. Forn € Z, we have

(a): 2(—u)" T G_, = —(3ru® + 13 — 3stu)2G3 — (2su — t2)2G2 3Gy — (—rt? — tu + 2rsu)®G2 .G,
—(—st? +2s5%u+4u? +rtu)? G2 | G +2(3ru® +1° — 3stu) ((—2su+t2) Gy 3+ (—rt? —tu+2rsu)Grio+
(—st? +2s%u+4u? +rtu)Gpi1) G2 +2(25u—t2) (—1t? —tu+2rsu) Gy 4 3Gy oGy +2(2su — t2) (— st +
252U+ 4u +rtu) Gy 3Gyt G —2(—st? +-252u+4u? +rtu) (—rt? —tu+-2rsu) Gy 20Gr i1 G —2G3u* +
u?(—2su +t2)Gop 3Gy + u? (=112 — tu + 2rsu)Gap oGy + u?(—st? + 25%u + 4u® + rtu)Gop 111G —
2u?(2su — 12)GonGpis + 2u? (—rt? — tu+ 2rsu)Gop Gpio + 2u? (—st? 4+ 252u + 4u? + rtu) Gop Gyt —
3u?(3ru? + t3 — 3stu)Ga, G-

(b): H_,, = % (—w)™" (H2 + 2H3,, — 3H2, Hy,) -
Note that G_,, and H_,, can be given as follows by using Gy = 0 and Hy = 4 in Theorem 5,
1

G_, = 6(—u)‘"(—6G3n +6H,Go, —3H2G,, + 3H,G,,), (1.10)
1 s
H., = 5 (—u)"" (H} 4+ 2Hs, — 3H2,H,,) , (1.11)

respectively.

If we define the square matrix M of order 4 as

r s t u

1 0 0 O
A= A'r'stu =

01 0 O

0 01 0
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and also define

Gny1  sGp+tGh_1 +uG,_o tG, + uG,_1 uGy,
B, — G, sG,_1+tGh_9a+uG,_3 tGh_1+uGh_o uG,_1
Gn_o1 $Gp_o+1tGn_3+uG,_s tGp_o+uG,_3 uG,_o
Gn_a 8G,_3+tGp_a+1uGn_5 tGn_3+uGn_a uG,_3
and
Wpt1  sWyp +tWehg +ulW, o tWy +uW,_1 uW,
D, — W, sWh_1+tWu_o+uW,_3 tW,_1+uW,_o uW,_1
Wopo1 sWyho+tW, s+uWy,_y tW,_o+uW,_3 ulW,_o
Wihoo sWh_s+tWp_s+uWy_s5 tWh_s+uW,_4 ulW,_3
then we get the following Theorem.
THEOREM 7. For all integers m,n, we have
(a): B, = A", i.e.,
r s t u ! Gni1  sGp +tGp_1 +uGn_o tG,, + uGn_1 uG,
1 0 0 O - G, $Gn_1+tGh_o+uG,_3 tGh_1+uG,_o uG,_1
0100 | | Guot 5Guo+1Gus+uGns tGns+uGns uGn_s
0 01 0 Gn_o $Gn_34+1tGh_s+uG,_5 tGn_3+uG,_4 uG,_3

(b): DlAn = AnDl
(C): Dn+7n = D,By, = By, D,

Proof. For the proof, see Soykan [8, Theorem 19]. O

THEOREM 8. For all integers m,n, we have

Witm = WnGerl + anl(SGm +tGp_1 + qu,Q) + Wn,Q(tGm + ’U,Gmfl) + uW,_3G,,. (1.12)
Proof. For the proof, see Soykan [8, Theorem 20]. O
In the next sections, we present new results.
2. Generalized Pandita Sequence
In this paper, we consider the case r = 2,8 = —1,t = 1,u = —1. A generalized Pandita sequence
{Watn>0 = {Wn(Wo, Wi, Wy, Ws) },>0 is defined by the fourth-order recurrence relation
Wn = 2Wn71 - Wn72 + Wn73 - Wn74 (21)

with the initial values Wy = co, W1 = ¢1, Wa = ca, W3 = ¢3 not all being zero. The sequence {W,, },>0 can

be extended to negative subscripts by defining

W =W_tno1)y = W_(noo) + 2W_(n3) = W_(n_yg)
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for n = 1,2, 3, .... Therefore, recurrence (2.1) holds for all integers n.

Characteristic equation of {W),,} is

whose roots are

where

Note that

Note also that

22842 b1 =(2 22— 1)(2—1)=0

1/3 1/3
1o (2, [3U\T (2 [0
3 54 108 54 108 ’

1/3
/ 31 /
108

Lo (2,
I (uiid
3 54
L,

 —1+iV3

5 = exp(27i/3).

w

at+pB+y+4d =
af+ay+ad+py+Bo+v =
afy+afd+ayd+ v =

afys =

O‘+B+7 = 1?
af+ay+py = 0,

afy = 1.

29
2 R
v (54

1/3
L2, /3 (2
o2 /2L wl 2
3 54 108 54

The first few generalized Pandita numbers with positive subscript and negative subscript are

following Table 1.

Table 1. A few generalized Pandita numbers

113

given in the
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n W, W_n

0 Wo Wo

1 Wy Wo — Wi +2Wy — W3
2 W Wi+ Wy —W;

3 Ws Wo + Wy — Ws

4 Wi — Wy — Wy 4+ 2Ws5 2Wo — 2W1 4+ 2Wy — Wy
5 Wi —2Wo — Wy + 3W3s 3Wy — 2Ws

6 Wy — 3Wy — 2W5 4 5Ws 3Wy — 2W,

7 2W1 — 5Wy — AWy + 8Ws 3Wy — 22U

8 3Wy — 8Wy — 6Wy + 12W3 Wy — 3W71 + 6Wsy — 3W3
9 AWy — 12Wy — 9W5 4 18W3 5W1 —2Wy — Wo — W3

10 6W; — 18Wy — 14Wy 4+ 27TW3  3Wy + Wy — 5W5 + 2Ws
11 9Wq — 2TWo — 21W5 4+ 40W5  4Wy — 8W1 + 8Wo — 3W3
12 13W7 —40Wy — 31Wso 4+ 59W3 AW, — AWy 4+ 5Wo — AW

13 19W7; — 59Wy — 46Ws + 87W3 IW7 — 12Ws + 4W5
Note that the sequences {P,} and {S,} which are defined in the section Introduction, are the special

cases of the generalized Pandita sequence {W,}. For convenience, we can give the definition of these two
special cases of the sequence {W,,}, in this section as well. Pandita sequence {P,},>0 and Pandita-Lucas

sequence {S, }n>0 are defined, respectively, by the fourth-order recurrence relations

P, 2Py 1 — Py o+ Py 3—Pry, R=0P=1,P=2P=3, n >4,

Sn 2Sn71 - Sn72 + Snffi - Sn747 SO = 47 Sl = 2; 52 = 27 S3 =5, n > 4.

The sequences { P, },>0 and {S,}n>0 can be extended to negative subscripts by defining

P = P_(no1) = P_(n—2) + 2P_(n—3) = P_(n—),

S.n = S—(n—l) - S—(n—2) + 2S—(n—3) - S—(n—4)7

for n =1,2,3, ... respectively.
Next, we present the first few values of the Pandita and Pandita-Lucas numbers with positive and
negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 ) 6 7 8 9 10 11 12 13
P, 0 1 2 3 5 8§ 12 18 27 40 59 87 128 188
rp, 00 0 -1 -1 0 -1 =2 0 0o -3 -1 2 -3
Sp, 4 2 2 ) 6 7 11 16 22 32 47 68 99 145
S, 4 1 -1 4 3 -4 2 8§ -5 =5 14 1 —-18 14
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(1.5) can be used to obtain the Binet formula of generalized Pandita numbers. Binet’s formula of

generalized Pandita numbers can be given as follows:

THEOREM 9. (Four Distinct Roots Case: a # B # v # § = 1) For all integers n, Binet’s formula of
generalized Pandita numbers is

(aW3 — a2 — a)Wa + (—a? + a+ )W, — Wo)a"

Wn = 30— 2
n (BW3 — B(2 — B)Wa + (=B + B+ L)W, — Wy)B"
38 —2
n (YWs —~v(2 —7)Wa + (—7* +~v+ D)W — W)y
3y —2
W3 + Wy + Wy.

Pandita and Pandita-Lucas numbers can be expressed using Binet’s formulas as follows.

COROLLARY 10. (Four Distinct Roots Case: o # 8 # v # 0 = 1) For all integers n, Binet’s formula of

Pandita and Pandita-Lucas numbers are

n+3 n+3 n+3
Po = 32—2+366—2+31—2_1’
and
Sy =a"+ 5"+ +1,
respectively.

Note that Binet’s formulas of Narayana and Narayana-Lucas numbers, respectively, are

an+1 ﬁn-‘rl ,YnJrl
N, y
@—Ba—7  G-a)B-7 (G —a0-5)
Un - an + ﬁn + ’7n7

see, Soykan [13] for more details.
So, by using Binet’s formulas of Pandita, Pandita-Lucas and Narayana, Narayana-Lucas numbers, (or

by using mathematical induction), we get the following Lemma which contains many identities:

LEMMA 11. For all integers n, the following equalities (identities) are true:

(a):

Nnt3 = Poys — Poga.

Ny = Poys — 2P, 12+ Py

Prois = 4Npio + 2Npit + 3N, — 1.
Py=Npya+ Ny —1=Nps— 1.
N,=—-Pyjo+Pyy1+ P, + 1.
Nn+1 = Poy1 — Pn.

(b):
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o 31N, 5 = 235,13 — 105,42 + 65,1 — 195,,.
e 31N, =4S5,43 +5Sp4+2 — 3Sn4+1 — 65,

® Spta =4Npio+ Ny + Ny + 1.

o S, =3N,41 — 2N, + 1.

e 31N, = 95,42 — 3Sn4+1 — 25, — 4.

(c):

e Upiz=Pyy3— Poio+3P,41 — 3P,.

o U,=—-2P,13+4P, 42+ Ppi1 — 3P,.

® 31P, 14 = 55Uy 42 + 23Up41 + 36U, — 31.

e 31P, = 13Uy 42 + 6Up 41 + 40U, — 31.

o Uy, =2P,.0+ Pyi1 — 5P, —2.

o 13P, 1 — 19P, = —2U,+1 + 3U, + 6.
(d):

o Unis = 2Smss — Snio — Sn.
o Uy = Snt3 — Snyo.

0 Spia=Unio+ Uni1+ U+ 1.
e S, =U,+1.

o U,=25, —1.

o0
Next, we give the ordinary generating function > W, 2™ of the sequence W,,.
n=0

o0
LEMMA 12. Suppose that fw, (z) = > W,z™ is the ordinary generating function of the generalized
n=0

Pandita sequence {W,}. Then, > W,z"™ is given by
n=0
i o — Wot (Wi = 2Wo)z + (Wa — 2Wh + Wo)2? + (Ws — 2Ws + Wy — Wo)2®
o L 1—2z+422—-234 24 ’

Proof. Take r =2,s = —1,t = 1,u = —1 in Lemma 3.

The previous lemma gives the following results as particular examples.

COROLLARY 13. Generating functions of Pandita and Pandita-Lucas numbers are

= z
P2" =
nz::o n* 1—-2z+42%2—23+2%
is N 4—62+4222 — 23
zZ =
— " 1—2z+422— 23+ 2%

respectively.

3. Simson Formulas

Now, we present Simson’s formula of generalized Pandita numbers.
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THEOREM 14 (Simson’s Formula of Generalized Pandita Numbers). For all integers n, we have
Wiis Woio Wipr o Wy

Wite Wogr  Wn Wi
Wit Wn  Who1 Wihoo

Wn anl Wn72 an?)
(4Wo — 5Wq — 8W3)W3 + (4Wo + AW — 5W3)WE + (Wa — 3W, — W3)W§E + OW1 WaWs — 3WoWaWs +

SWoW1 W3 — TWoW, Ws).

= (Wo + Wo — W) (=W3 + 3W5 — W + W3 + (5Wo — 2W,) W2 +

Proof. Take r =2,s = —1,t =1,u = —1 in Theorem 4. [J

The previous theorem gives the following results as particular examples.

COROLLARY 15. For all integers n, the Simson’s formulas of Pandita and Pandita-Lucas numbers are

given as
Pn+3 Pn+2 Pn+1 Pn
Pn+2 Pn+1 Pn Pn—l - 1
Pn-l—l Pn Pn—l P71,—2
Pn Pnfl Pn72 Pn73
Sn+3 Sn+2 Sn+1 Sn
Snt2 S S Sn-
+2 +1 1 - 31
Sn+1 Sn Sn—l Sn72
Sn Snfl Sn72 Snf?)
respectively.

4. Some Identities

In this section, we obtain some identities of Pandita and Pandita-Lucas numbers. First, we can give a

few basic relations between {W,,} and {P,}.

LeMMA 16. The following equalities are true:

(a): W, = 2Wo—2W14+2Wo—W3) Py 5+ (5W1 —3Wo —5Wo+2Ws) P14+ (5Wo —3W1 —2W3) P, 3+
(2W35 — 3W3) Py yo.

(b): Wy, = Wy + Wy —Wa)Ppia+ (3Wo — Wy — 2Wy — W3)Prys + (2Wo — 2W, — W + W3) Py +
(2Wy — 2Wy — 2Wo + W3) Py i1

(c): Wy, = (Wi +Wo — W3)Ppys+ (Wo—3W1 + Ws5)Ppio+ (3W, — Wy — 3Wa + W3)Pyyr + (Wo —
W1 — Wy)P,.

(d): Wy, = (Wy — W1 +2Wy — W35)Pp 0+ (2W1 — Wy — AWa + 2W3) Pyy1 + (2Wo — Wy — W3) P, +
(W3 — Wy — W) P,_1.

(€): Wy, =WoPpiq + (Wi —2Wo) P, + (Wo — 2Wy + Wo) Py + (W — Wy — 2Wa + W3) P _o.
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Proof. Note that all the identities hold for all integers n. We prove (a). To show (a), writing
Wn:(1XP7L+5+bXPn+4—|—CXPn+3—|—dXPn+2

and solving the system of equations

Wo = axXxPs+bXxPi+cecxPs+dx Py
Wi = axPFPs+bxPs+cxPi+dxPs
Wo = axPr+bxPs+cx Ps+dx Py
Ws = axPs+bx P;+cx Ps+dx Ps

we find that a = 2Wy —2W1 +2Ws —W3,b = 5W71 —3Wo —5Wo +2W3, c = 5Wo —3W1 —2W3,d = 2W3 —3Ws.
The other equalities can be proved similarly. [
Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between {W,,} and {5, }.

LEMMA 17. The following equalities are true:

(a): 31W, = —(40Wy — 11Wy + 39Wy — 37TW3) S, 45 + (43Wo — 25W + 52Ws — 39W3) S, 4 — (Wo —
15Wy + 25Wy — 11W3)Syas + (20Wo — Wy + 43Ws — 40W3) Sy 0.

(b): 31W,, = —(3TWo + 3W1 + 26Ws — 35W3)Sp4 + (39Wo + AW, + 14W — 26W3) S5 — (11W, —
10Wy — AW, + 3W3) S io + (40Wo — 11Wy + 39Ws — 37TW3) S

(c): 31W,, = —(35Wo + 2W) + 38Wy — 44W3) S, 15 + (26Wo + 13W5 + 30W, — 38Ws) S, 12 + (3Wo —
14Wy + 13Ws — 2W3)Sppq + (3TWo + 3Wy + 26Ws — 35W3)S,,.

(d): 31W,, = —(44Wo — 9W + 46W — 50W3) S, 2 + (38Wo — 12W; + 51Ws — 46W3)Spi1 + (2Wp +
Wy — 12Wy + 9W3)S,, + (35Wo + 2W; + 38W, — 44W3) S, .

(e): 31W,, = —(50Wy — 6W; + 41Wy — 54W3)S, 11 + (46Wy — 8W; + 34W, — 41W3)S,, — (9W, —
11Wy + 8Ws — 6W3)S,_1 + (44Wo — 9W; + 46Ws — 50W3) S, _o.

Now, we give a few basic relations between {P,} and {S,}.

LEMMA 18. The following equalities are true:

31P, = 44S,.5 —385,:4 — 2Sn43 — 35S 12,
31P, = 50Sp44 — 465,45 + 95,40 — 445,11,
31P, = 548,45 — 418,45 + 6541 — 50S,,
31P, = 67Sno— 485,41 + 45, — 54S,_1,

31P, = 865,41 — 635, +13S,-1 —675,_9,
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and

Sn = 3Pni5 —2Pu1q — 6P, 3+ 4P, 2,
S, = 4Pyi4—9Pnis+ TPuys — 3Pnsi1,
S, = —Puis+3Pusot Posr — AP,
Sn = Payo+ 2P — 5P, + Py,

S, = A4Pyi1— 6P, +2Py 1 — Py

5. Relations Between Special Numbers

In this section, we present identities on Pandita, Pandita-Lucas numbers and Narayana, Narayana-Lucas

numbers. We know that

Pn - Nn+2+Nn_1a
Sn = Un + 17
Note also that from Lemma 16 and Lemma 17, we have the formulas of W,, as
W, = (Wl + Wy — W3)Pn+3 + (WO —3Wy + W3)Pn+2
+(3W1 — Wy — 3Ws5 + Wg)Pn+1 + (WQ - Wy - I/V())Pn7

31W, = —(35Wo + 2Wy + 38Wy — 44W3) S, 45 + (26Wo + 13Wy + 30W, — 38W3) S, 40

+(3W0 — 14Wy + 13W5 — 2W3)Sn+1 + (37W0 + 3W1 + 26W5 — 35W3)Sn

Using the above identities, we obtain the relation of generalized Pandita numbers and Narayana,

Narayana-Lucas numbers in the following forms:

LEMMA 19. For all integers n, we have the following identities:

(a): W, = (W2 — Wl)Nn+2 + (Wg —2Wy + Wl)Nn+1 + (W1 — Wo)Nn — W3+ Ws + Wy.
(b): 31W,, = (6W3 —8Wo +11W7 — 9W0)Un+2 + (—2W3 + 13Woy — 14W7 + 3W0)Un+1 + (9W3 —12W,
+ Wy + QWO)Un — 31W3 + 31Ws + 31W,.

6. On the Recurrence Properties of Generalized Pandita Sequence

Taking r =2,s = —1,t = 1,u = —1 in Theorem 5, we obtain the following Proposition.

PROPOSITION 20. For n € Z, generalized Pandita numbers (the case r =2,s = —1,t = 1,u = —1) have

the following identity:

1
W_, = 6(—6W3n + 65, Way, — 3S2W, + 382, Wi, + WoS2 + 2WySs,, — 3WS,Say,).
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From the above Proposition 20 (or by taking G,, = P,, and H, = S,, in (1.10) and (1.11) respectively),
we have the following corollary which gives the connection between the special cases of generalized Pandita
sequence at the positive index and the negative index: for Pandita and Pandita-Lucas and Pandita numbers:
take W,, = P, with Py =0,P; = 1,P, = 2, P; = 3 and take W,, = S,, with Sy = 4,51 = 2,5, = 2,55 =5,

respectively. Note that in this case H,, = S,.

COROLLARY 21. For n € Z, we have the following recurrence relations:

(a): Pandita sequence:
P, = %(—2P3n + 25, Pay, — S2 P, + SonPr).
(b): Pandita-Lucas sequence:
S_, = é(*&ggn + 65,52, — 3525, + 352,85, + 453 + 853, — 125,,52,).
We can also present the formulas of P_,, and S_,, in the following forms.

COROLLARY 22. For n € Z, we have the following recurrence relations:
(a): P_, = 3(—2P3, + 2(—Pyy5 + 3Ppso + Poy1 — 4P, Pay — (—Poys + 3Puja + Poyy —4P,)? P, +
(—Pont3 + 3Payy2 + Popg1 —4P2,)Py).
(b): P_, =2N2+2N2_5 —3N,+1N,, — 3N, _1Ny—2 + Noy + Nopg — 1.
(c): S_p = 2(U2 = Usy +2).

Proof.
(a): By using the identity S, = —P,,13+3Ps+2+ P41 —4P, and Corollary 21, (or by using Corollary
6 (a)), we get (a).
(b): Since P, = Npyo + N, — 1 and N_,, = 2N2 + Ny, — 3N,,11N,, (see, for example Soykan [12]),
we get (b).
(c): Since S, = U, +1 and U_,, = L(U2 — Ua,) (see, for example Soykan [12]), we obtain (c). O

7. Sum Formulas

The following Corollary gives sum formulas of Narayana and Narayana-Lucas numbers.

COROLLARY 23. Forn > 0, Narayana and Narayana-Lucas numbers have the following properties:
(a):
(1): Yr o Nk =Npys— 1
(ii): >p_o Now = 5(Nont2 + Nogg1 + 2Nap, — 2).
(iii): Yp_o Nort1 = 5(2Napnt2 + 2Nopy1 + Nop — 1).
(b):
(1): Yr o Uk =Upys — 1.
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(i): Yo Uz = 5 (Uan

2 + Uspy1 + 20, + 1).

(ii): Y5 Uokt1 = 5(2Unns2 + 2Uzn 41 + Uz — 4).

Proof. It is given in Soykan [13, Corollary 6.1 and Corollary 6.2]. O
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The following Corollary presents sum formulas of Pandita and Pandita-Lucas numbers.

COROLLARY 24. For n > 0, Pandita and Pandita-Lucas numbers have the following properties:

(a):

(i): Y7 Pe = 3Npio + Nyyy + 2N, —n — 4.
(ii): Z::O ng = %(5N2n+2 + 2N2n+1 + 4N2n — 3n — 7)
(iii): ZZ:O P2k+1 = %(7N2n+2 + 4N2n+1 + 5N2n —3n — 8).

(b):
(i): ZZ:O Sk = Un+2 +

U, +n.

(i): Yp_o Sok = 3(Uzng2 + 2Uzn + Usny1 + 3n + 4).
(iil): Y p o Sans1 = 1 (2Usn2 + 2Usp41 + Uz + 30 — 1).

Proof. The proof follows from Corollary 23 and the identities

P,

U,+1.0

Nptio+ N, —1,

8. Matrices and Identities Related With Generalized Pandita Numbers

If we define the square matrix A of order 4 as

and also define
Poia
P,
P,
Py

B,

and
Wn+ 1

W,
Wn—l
Wn72

then we get the following Theorem.

=l e
= o O =

—P,+Py1— P,
Py 1+ Py 2— P, 3
P o+ Py 3—Phy
—Py3+ Ppg— Pns

Wy + Wi — W,
“Who1 +Wyo = W3
—Who + W3 —Wp_4
Wiz +Wp_y —Wy_s

-1
0
0
0
P,— P, 1
Py — Py
Py_o—P,_3
Pz — Pny
W, —Wn_1
Wi—1 = Wh_2
W2 —Wy_3
Wi—g = Wi

_Pn
—In-1
—4In-2

—1In-3

-W,
W1
W,
W,
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THEOREM 25. For all integers m,n, we have

(a): B, = A", i.e.,

n

2 -1 1 -1 P,y -P,+Py1-P,s P,—P,, -P,
| T 000 | P PeatPae—Pis Pai—Paz —Pa

0 1 0 0 Poy —Pyo+Pys—Poy Pyro—Posy —Pno

0 0 1 0 Py o —Py5+Pyy—Pys Pys—Poy —Pns

(b) DlAn = AnDl
(¢): Dyym = DyB,, = B,D,,.

Proof. Take r =2,s = —1,t = 1,u = —1 in Theorem 7. O
Using the above last Theorem and the identity
P, = Npi2+N,—-1
= Nn+3 - 17

we obtain the following formula for Narayana numbers.

COROLLARY 26. For all integers n, we have the following formula for Narayana numbers.

n

2 -1 1 -1 Noya—1 —Npya+Nppo+1 Nyys—Nppo —Npys+1
|10 0 0 || Nas =1 =Nt Nawi 1 Nupa— Mot N+ 1

0 1 0 o0 Npjo—1 ~Nppo+ No+1  Npsr—No  —Npjr +1

0O 0 1 O Nyy1—1 —Nppy1+Np1+1 N, —Np_1 —N, +1

Next, we present an identity for W, 4.
THEOREM 27. For all integers m,n, we have
Wn+m = Wan+1 + Wn—l(_Pm + Pm—l - Pm—2) + Wn—2(Pm - m—l) - Wn—3Pm-

Proof. Take r =2,s = —1,t = 1,4 = —1 in Theorem 8. [J

As particular cases of the above theorem, we give identities for Py, and Sy4m.

COROLLARY 28. For all integers m,n, we have
Poim = PoPpi1+Po1(—Pm+ Ppo1— Po—2) + Po—2(Py — Pyo1) — P3P,
Sotm = SnPmy1 + Sn—1(—=Pm + Pm—1— Pm—2) + Sn—2(Pm, — Pr—1) — Sn—3Pn.
Taking m = n in the last corollary, we obtain the following identities:

P2n = PnPn+1+Pn71(_Pn+Pn71_Pn72)+Pn72(Pn_Pn71)_Pnf?)Pna

SQn = S71,Pn+1 +Sn—1(*Pn+Pn—l *Pn—Q) +Sn—2(Pn *Pn—l) *Sn—SPn-
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